52 research outputs found

    Design and assembly of a magneto-inertial wearable device for ecological behavioural analysis of infants

    Get PDF
    There are recent evidence which show how brain development is strictly linked to the action. Movements shape and are, in turn, shaped by cortical and sub-cortical areas. In particular spontaneous movements of newborn infants matter for developing the capability of generating voluntary skill movements. Therefore studying spontaneous infants’ movements can be useful to understand the main developmental milestones achieved by humans from birth onward. This work focuses on the design and development of a mechatronic wearable device for ecological movement analysis called WAMS (Wrist and Ankle Movement Sensor). The design and assembling of the device is presented, as well as the communication protocol and the synchronization with other marker-based optical movement analysis systems

    Inertial-Magnetic Sensors for Assessing Spatial Cognition in Infants

    Get PDF
    This paper describes a novel approach to the assessment of spatial cognition in children. In particular we present a wireless instrumented toy embedding magneto-inertial sensors for orientation tracking, specifically developed to assess the ability to insert objects into holes. To be used in naturalistic environments (e.g. daycares), we also describe an in-field calibration procedure based on a sequence of manual rotations, not relying on accurate motions or sophisticated equipment. The final accuracy of the proposed system, after the mentioned calibration procedure, is derived by direct comparison with a gold-standard motion tracking device. In particular, both systems are subjected to a sequence of ten single-axis rotations (approximately 90 deg, back and forth), about three different axes. The root-mean-square of the angular error between the two measurements (gold-standard vs. proposed systems) was evaluated for each trial. In particular, the average rms error is under 2 deg. This study indicates that a technological approach to ecological assessment of spatial cognition in infants is indeed feasible. As a consequence, prevention through screening of large number of infants is at reach

    Performance of Motor Sequences in Children at Heightened vs. Low Risk for ASD: A Longitudinal Study from 18 to 36 Months of Age

    Get PDF
    Recent research shows that motor difficulties are a prominent component of the behavioral profile of autism spectrum disorder (ASD) and are also apparent from early in development in infants who have an older sibling with ASD (High Risk; HR). Delays have been reported for HR infants who do and who do not receive an eventual diagnosis of ASD. A growing body of prospective studies has focused on the emergence of early motor skills primarily during the first year of life. To date, however, relatively little work has examined motor skills in the second and third years. Thus, the present research was designed to investigate motor performance in object transport tasks longitudinally in HR and LR (Low Risk) children between the ages of 18 and 36 months. Participants (15 HR children and 14 LR children) were observed at 18, 24, and 36 months. Children completed two motor tasks, the Ball Task and the Block Task, each of which included two conditions that varied in terms of the precision demands of the goal action. Kinematic data were acquired via two magneto inertial sensors worn on each wrist. In the Block Task, HR children reached more slowly (i.e., mean acceleration was lower) compared to LR children. This finding is in line with growing evidence of early delays in fine motor skills in HR children and suggests that vulnerabilities in motor performance may persist into the preschool years in children at risk for ASD

    A mechatronic platform for behavioral studies on infants

    Get PDF
    In this article the design and fabrication of a new mechatronic platform (called "Mechatronic Board") for behavioral analysis of children are presented and discussed. The platform is the result of a multidisciplinary design approach which merges input coming from neuroscientists, psychologists, roboticians and bioengineers, with the main goal of studying learning mechanisms driven by intrinsic motivations and curiosity. A detailed analysis of the main features of the mechatronic board is provided, focusing on the key aspects which allow studying intrinsically motivated learning in children. Finally preliminary results on curiosity-driven learning, coming from a pilot study on children are reporte

    A Wearable System for Real-Time Continuous Monitoring of Physical Activity

    Get PDF
    Over the last decades, wearable systems have gained interest for monitoring of physiological variables, promoting health, and improving exercise adherence in different populations ranging from elite athletes to patients. In this paper, we present a wearable system for the continuous real-time monitoring of respiratory frequency (fR), heart rate (HR), and movement cadence during physical activity. The system has been experimentally tested in the laboratory (by simulating the breathing pattern with a mechanical ventilator) and by collecting data from one healthy volunteer. Results show the feasibility of the proposed device for real-time continuous monitoring of fR, HR, and movement cadence both in resting condition and during activity. Finally, different synchronization techniques have been investigated to enable simultaneous data collection from different wearable modules.Ministerio de EconomĂ­a y Competitivida

    Development of goal-directed action selection guided by intrinsic motivations: an experiment with children

    Get PDF
    Action selection is extremely important, particularly when the accomplishment of competitive tasks may require access to limited motor resources. the spontaneous exploration of the world plays a fundamental role in the development of this capacity, providing subjects with an increasingly diverse set of opportunities to acquire, practice and refine the understanding of action-outcome connection. the computational modeling literature proposed a number of specific mechanisms for autonomous agents to discover and target interesting outcomes: intrinsic motivations hold a central importance among those mechanisms. Unfortunately, the study of the acquisition of action-outcome relation was mostly carried out with experiments involving extrinsic tasks, either based on rewards or on predefined task goals. this work presents a new experimental paradigm to study the effect of intrinsic motivation on action-outcome relation learning and action selection during free exploration of the world. three- and four-year-old children were observed during the free exploration of a new toy: half of them were allowed to develop the knowledge concerning its functioning; the other half were not allowed to learn anything. the knowledge acquired during the free exploration of the toy was subsequently assessed and compared

    Sensor-based technology in the study of motor skills in infants at risk for ASD.

    Get PDF
    Abstract-Motor impairments seems to play an important role in neurodevelopmental disorders such as autism spectrum disorders (ASD). Early detection of motor abnormalities during first years of life, may give important information regarding whether a child may receive a later diagnosis of Autism: for this reason an objective assessment of motor performance is crucial. While there are several technological solutions suitable to this end, they often require highly structured environments. In this work we propose the use of a magneto-inertial platform to study early motor performance between 12-36 months of age suitable to be used in non-structured environment

    Exploration and learning in capuchin monkeys (Sapajus spp.): the role of action-outcome contingencies

    Get PDF
    Animals have a strong propensity to explore the environment. Spontaneous exploration has a great biological significance since it allows animals to discover and learn the relation between specific behaviours and their consequences. The role of the contingency between action and outcome for learning has been mainly investigated in instrumental learning settings and much less in free exploration contexts. We tested 16 capuchin monkeys (Sapajus spp.) with a mechatronic platform that allowed complex modules to be manipulated and to produce different outcomes. Experimental subjects could manipulate the modules and discover the contingencies between their own specific actions and the outcomes produced (i.e., the opening and lighting of a box). By contrast, Control subjects could operate on the modules, but the outcomes experienced were those performed by their paired Experimental subjects (\u27\u27yoked-control\u27\u27 paradigm). In the exploration phase, in which no food reward was present, Experimental subjects spent more time on the board and manipulated the modules more than Yoked subjects. Experimental subjects outperformed Yoked subjects in the following test phase, where success required recalling the effective action so to open the box, now baited with food. These findings demonstrate that the opportunity to experience action-outcome contingencies in the absence of extrinsic rewards promotes capuchins\u27 exploration and facilitates learning processes. Thus, this intrinsically motivated learning represents a powerful mechanism allowing the acquisition of skills and cognitive competence that the individual can later exploit for adaptive purposes

    Exploration and learning in capuchin monkeys (Sapajus spp.): the role of action-outcome contingencies

    Get PDF
    Abstract Animals have a strong propensity to explore the environment. Spontaneous exploration has a great biological significance since it allows animals to discover and learn the relation between specific behaviours and their consequences. The role of the contingency between action and outcome for learning has been mainly investigated in instrumental learning settings and much less in free exploration contexts. We tested 16 capuchin monkeys (Sapajus spp.) with a mechatronic platform that allowed complex modules to be manipulated and to produce different outcomes. Experimental subjects could manipulate the modules and discover the contingencies between their own specific actions and the outcomes produced (i.e., the opening and lighting of a box). By contrast, Control subjects could operate on the modules but the outcomes experienced were those performed by their paired Experimental subjects ("yoked-control" paradigm). In the Exploration Phase, in which no food reward was present, Experimental subjects spent more time on the board and manipulated the modules more than Yoked subjects. Experimental subjects outperformed Yoked subjects in the following Test phase, where success required recalling the effective action so to open the box, now baited with food. These findings demonstrate that the opportunity to experience action-outcome contingencies in the absence of extrinsic rewards promotes capuchins' exploration and facilitates learning processes. Thus, this intrinsically motivated learning represents a powerful mechanism allowing the acquisition of skills and cognitive competence that the individual can later exploit for adaptive purposes
    • …
    corecore